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1 Introduction

1.1 Requirements for encrypted CAN messaging

Communication on CAN is not like communication in mainstream computing: CAN is
an embedded real-time control bus. The messages are small, containing sensor data and
actuator commands, and have strict latency and robustness requirements. From this
there are several requirements on any cryptographic system for CAN:

e CAN is a broadcast bus that embodies a publish-subscribe model: messages
containing sensor and status information are published periodically and the
sender generally doesn’t know about the receivers. The cryptographic scheme
must not require 1:1 communication, such as peer-to-peer key negotiation.

e CAN is a real-time control bus. The cryptographic scheme must result in
messages that have bounded latencies.

e CAN messages are very small by computing standards: just 8-byte payloads. The
cryptographic scheme must fit with this limited size.

e CAN systems are usually built from constrained embedded hardware. The
cryptographic scheme must work on microcontrollers with limited resources.

e CAN connected devices going through a watchdog reset must return to normal
operation quickly to resume control of a piece of physical hardware. The
cryptographic scheme must support fast-start communications.

The CryptoCAN scheme from Canis Labs is designed to meet all these requirements.

In the confidentiality integrity availability (CIA) model of communications security,
CryptoCAN can provide confidentiality (i.e., keep the messages secret) and integrity
(i.e., ensure messages came from a legitimate sender).

Before describing CryptoCAN, there is an important caveat to bear in mind:

No cryptographic scheme for CAN ensures availability: attacks such as bus flooding
and the Bus Off attack (where a targeted device is driven offline by CAN errors) can
prevent communications from taking place (just as a physical attacker can prevent
communications simply by cutting the bus).

1.2 Basic CryptoCAN messaging

CryptoCAN takes a standard CAN frame (the plaintext frame) and converts it into a
CryptoCAN message (the ciphertext message) that is sent on CAN then converted back
into the original plaintext CAN frame by each receiver (Figure 1).
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Figure 1: How CryptoCAN encodes and decodes a plaintext CAN frame
A CryptoCAN message is 128 bits long and contains:
e The original frame payload (up to 64 bits)
e The original plaintext frame DLC (4 bits)
o A message authentication code (MAC) of 60 bits

A MAC is a bit like a CRC but much bigger and practically impossible to forge.
CryptoCAN uses the standard AES-CMAC algorithm to produce the MAC.

CryptoCAN uses a MAC-then-Encrypt (MtE) approach: the MAC is formed first then the
whole message, including the MAC, is encrypted. Encryption is done using the standard
AES-128 algorithm with the cipher feedback (CFB) mode. The result is a 128-bit
ciphertext block. This is split into two pieces and put into two 64-bit (8 byte) CAN frames:
Frame A and Frame B.

The CAN ID for the pair of frames is the plaintext CAN frame’s ID with one bit of the ID
used as the B Flag: this is 0 for Frame A and 1 for Frame B. The flag is there to ensure that
the receiver can reassemble the pair of frames back into the CryptoCAN message before
decoding. Under the CAN protocol arbitration rules, Frame A is a higher priority than
Frame B and is always sent on the bus ahead of Frame B. The application can choose the
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B Flag. For example, in a J1939 system the lowest bit of the priority field (bit 26) might
be used, and in a CANOpen system, one of the address bits might be used.

[reference the data sheet and indicate the build options used for the firmware]

[indicate where to get the firmware from]

1.3 Message authentication

The CryptoCAN MAC is computed by using the AES-CMAC algorithm on 128 bits of
data that both the sender and receiver know:

e 29 bits containing CAN ID (the ID with the B Flag removed, but with 1 bit set for
standard/extended)

e 4 bits containing the plaintext CAN frame DLC
e 64 bits containing the plaintext CAN frame payload (padded if less than 8 bytes)

e A 31-bit freshness value: an application-specific value representing when the
frame was created (it could be a time or sequence number).

When the receiver decodes a CryptoCAN message, it computes the MAC from these
same known values. If the received MAC and the computing MAC do not match exactly
then the message is rejected.

The MAC verification will detect any tampering with a message. For example, if the
payload is attached to a different CAN frame ID, then the receiver will not compute the
same MAC as transmitted. Similarly, a message will be rejected if the payload is altered.

One common attack on encryption systems is a replay attack: old messages are copied
and then replayed later. An attacker may not know the contents of the message but can
guess from context (for example, a message may result in a door being unlocked and
therefore the message contains an “unlock door” command) and they can keep copies of
messages with known behaviours to replay them later. These messages are genuine
(because they were created by the legitimate sender) but are not valid - because they are
out-of-date. This is why CryptoCAN has a freshness value included in the MAC: after
this value changes, previous messages will no longer verify.

The freshness value is controlled at the application level: it can be a shared global time
kept in a real-time clock on each device, or it can be a sequence number incremented
each time a message is sent. It could also be partitioned so that the upper bits reflect an
operating cycle count, stored in non-volatile memory in each device.

One problem with obtaining the freshness value from a timer is that a message may be
created at time ¢ but be received by the receiver at time t + L, where L is the latency of
Frame B. The freshness value at the receiver is therefore not the same as the one used to
create the message, and the MAC verification would normally fail. To address this issue,
CryptoCAN has an option to use spare bits in the DLC of Frame A and Frame B: when
a CAN frame is 8 bytes long, the lower 3 bits of the DLC are ignored by CAN and can be
used to carry information outside the payload. Frame A and Frame B together can are
used to carry the least significant 6 bits of the freshness value used to create the frames.
CryptoCAN at the receiver uses these 6 bits to work out the original freshness value,
determines if it is fresh, and verifies the MAC against it.
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CryptoCAN creates a context for each message source: this stores data to encode and
decode CryptoCAN messages, including key numbers of the encryption and MAC keys,
the bit number of the B Flag, and the previous CryptoCAN message ciphertext (i.e., the
payloads of Frame A and Frame B). The previous ciphertext is used by the CFB mode of
encryption (a mode that allows a receiver to start receiving messages very quickly after
starting or re-starting) but when a context is initialized, the previous ciphertext is
unknown and set to a random value. This results in an important CryptoCAN property:
the first CryptoCAN message after initialization will always be rejected. For a periodic message
this is usually not a problem. But it could be a problem for a sporadic message because
there may be no previous ciphertext. In this case, a simple solution is to always send the
sporadic message twice.

1.4 MicroPython API

Firmware for the Canis Labs CANPico hardware contains a MicroPython API for
CryptoCAN. The firmware runs on an RP2040 microcontroller, which has no
cryptographic hardware, so the software emulation of a SHE HSM is included, and
where keys stored in external flash memory. This is of course not resilient to physical
attacks (where the flash memory is de-soldered and the keys read out) but is primarily
intended to be used as an evaluation kit for CryptoCAN.

There is further development support built into CryptoCAN: an option to disapply the
encryption of CryptoCAN messages so that they are transmitted as plaintext (but still
with the MAC to protect against tampering). This helps a developer locate set-up
problems (for example, failing to set the same key values at the sender and receivers).
They can also continue to debug applications: Frame B contains the original payload and
existing CAN bus analyzer tools can simply process the unencrypted Frame B. The
processing time with or without the encryption applied is identical so that it can be
switched on later in deployment without invalidating previous testing.
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2 CryptoCAN Python API

CryptoCAN is provided via two classes: CryptoCAN and HSM.

2.1 HSM — Hardware Security Module
class HSM( [ secret_key=None ])

Initializes the HSM. On the CANPico board this will attempt to load the HSM with keys
from a flash memory block. If the parameter secret_key is set to 16 bytes then it will factory
reset the HSM (erasing all keys) and set the SHE SECRET_KEY value.

The ability to reset the HSM is only possible because it is a software emulation: real
HSMs cannot be reset. The feature is provided only for experimentation and early
development: it is not suitable for a deployment system and may be removed in a future
release of this APIL

Raises
e ValueError —if secret_key is not None and not 16 bytes
e RuntimeError —if the key storage is corrupted or uninitialized
Methods
get_id( [challenge=None] )
Gets the unique ID of the HSM.

This method implements SHE CMD_GET_ID. The function returns a 120-bit
unique ID, the 8-bit HSM status register, and a 128-bit MAC.

If challenge is not set, then a challenge of 0 is issued.
If the key for MASTER_ECU_KEY is empty, then the MAC returned is 0.
The return values are bytes in big-endian format.
Parameters

e challenge (bytes) — 16 bytes as a challenge value to the HSM
Raises

e ValueError —if the HSM returned an error

Returns A 3-tuple of the HSM unique ID, HSM status register, HSM MAC
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backdoor_set_key( key, key_value [, authentication_key=False] [, store_keys=False] )
A function for easily setting a key value.

This function is deprecated and will be removed in a future release of the API.
It is provided only for experimentation and early development: it is not suitable
for a deployment system and is present only to temporarily avoid the complexity
of the SHE secure key loading process (which requires tool support for generating
the necessary key programming values).

Parameters
o key (integer) — the key number
o key_value (bytes) — 16 bytes of key value

e authentication_key (bool) — if True then the ‘key flag’ is set and the key can
only be used for MAC generation and verification

o store_keys (bool) — if True then all the key values are flushed back to flash
memory

Return type bytes
enc_ecb( plaintext, key )
Encrypt a block of plaintext using AES-128 in Electronic Code Book mode.

This method implements SHE CMD_ENC_ECB. The function returns 16 ciphertext
bytes, encrypted using the specified valid key. Valid key numbers are SHE_KEY_1
to SHE_KEY_10 and SHE_RAM KEY.

For keys other than the RAM key, the key permission must be set to encryption
(i.e. the SHE ‘usage’ flag for the key must be clear, indicating it is not used for
generating or verifying a MAC). If the key value is set to a key defined as an
authentication key, then the HSM will return an error and an exception will be
raised.

Parameters
e plaintext (bytes) — 16 bytes of plaintext to be encrypted
o key (integer) — the key number

Return type bytes

Raises

e ValueError —if the HSM returns an error
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dec_ecb( ciphertext, key )

Decrypt a block of ciphertext encrypted using AES-128 in Electronic Code Book
mode.

This method implements SHE CMD_DEC_ECB. The function returns 16 plaintext
bytes, encrypted using the specified valid key. Valid key numbers are SHE_KEY_1
to SHE_KEY_10 and SHE_RAM KEY.

For keys other than the RAM key, the key permission must be set to encryption
(i.e. the SHE ‘usage’ flag for the key must be clear, indicating it is not used for
generating or verifying a MAC). If the key value is set to a key defined as an
authentication key, then the HSM will return an error and an exception will be
raised.

Parameters
¢ plaintext (bytes) — 16 bytes of ciphertext to be decrypted
o key (integer) — the key number

Return type bytes

Raises
e ValueError —if the HSM returns an error

generate_mac( message, key )
Generates a 128-bit MAC for a given message.

This method implements SHE CMD_GENERATE_MAC. The function returns 16
bytes in big-endian format for the specified message using the specified valid key.
Valid key numbers are SHE_KEY_1 to SHE_KEY_16 and SHE_RAM_KEY.

For keys other than the RAM key, the key permission must be set to authentication
(i.e. the SHE ‘usage’ flag for the key must be set, indicating it is not used for
encryption). If the key value is set to a key defined as an encryption key, then the
HSM will return an error and an exception will be raised.

Parameters

e message (bytes) —a multiple of 16 bytes
o key (integer) — the key number

Return type bytes

Raises

e ValueError —if the HSM returns an error or if message is not a multiple of 16
bytes in length
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verify_mac( message, mac, key [, mac_length=128] )

Verifies a MAC for a given message. Returns True if the verification failed and False
if the MAC was verified.

This method implements SHE CMD_VERIFY_MAC. The function returns 16 bytes
in big-endian format for the specified message using the specified valid key. Valid
key numbers are SHE_KEY_1 to SHE_KEY_16, SHE_RAM_KEY or SHE_BOOT_KEY.

For keys other than the RAM key, the key permission must be set to authentication
(i.e. the SHE ‘usage’ flag for the key must be set, indicating it is not used for
encryption). If the key value is set to a key defined as an encryption key, then the
HSM will return an error and an exception will be raised.

Parameters
e message (bytes) —a multiple of 16 bytes
e mac (bytes) — 16 bytes
¢ mac_length (integer) — a value between 1 and 128
o key (integer) — the key number
Return type bool
Raises

e ValueError —if the HSM returns an error or if message is not a multiple of 16
bytes in length or if mac_length is not between 1 and 128 or if mac is not 16
bytes

load_key(m1, m2, m3)
Securely set a specified key to a defined value.

This method implements SHE CMD_LOAD_KEY. The function takes values for
M1, M2 and M3 and returns a 2-tuple of 32 and 16 bytes, corresponding to the
defined values M4 and M5 respectively (the meaning of these values is detailed in
the SHE HSM specification).

Parameters
e ml (bytes) — 16 bytes
e m?2 (bytes) — 32 bytes
e m3 (bytes) — 16 bytes
Return type 2-tuple
Raises

e ValueError —if the HSM returns an error or if m1 is not 16 bytes or if m2 is
not 32 bytes or if m3 is not 16 bytes
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load_plain_key( key_value )
Set the RAM key to the given value.

This method implements SHE CMD_LOAD_PLAIN_KEY. The function takes the
value for the RAM key and sets it to the defined value. It returns None.

Parameters
e key_value (bytes) — 16 bytes
Raises
e ValueError —if the HSM returns an error or if key_value is not 16 bytes
export_ram_key()
Securely export the RAM key.

This method implements SHE EXPORT_RAM_KEY. The function takes no
parameters and returns a 5-tuple of 16, 32, 16, 32 and 16 bytes, corresponding to
the defined values M1, M2, M3, M4 and M5 respectively (the meaning of these
values is detailed in the SHE HSM specification).

Return type 5-tuple
Raises
e ValueError —if the HSM returns an error
init_rng()
Initializes the random number generator.
This method implements SHE CMD_INIT_RNG.
It takes no parameters and returns None.
Raises
e ValueError —if the HSM returns an error
extend_seed( entropy )
Extends the entropy of the random number generator.

This method implements SHE CMD_EXTEND_SEED. The function takes 16 bytes
of entropy value. It returns None.

Parameters
e entropy (bytes) — 16 bytes
Raises

e ValueError —if the HSM returns an error or if entropy is not 16 bytes
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rnd( as_int=False )

Return a cryptographically secure random number.

This implements SHE CMD_RND. It returns a 128-bit random number as bytes in

big-endian format or as a Python integer.

Parameters

e as_int (bool) — if True then the value returned is a 128-bit integer

Return type bytes

Raises

e ValueError —if the HSM returns an error

Symbols

The following symbols are defined that correspond to the standard SHE error

codes:

SHE_ERC_NO_ERROR

ERC_SEQUENCE_ERROR

ERC_KEY NOT_AVAILABLE

ERC_KEY_INVALID

ERC_KEY EMPTY

ERC_MEMORY_FAILURE

ERC_BUSY

ERC_GENERAL_ERROR

ERC_KEY WRITE_PROTECTED

ERC_KEY_ UPDATE_ERROR

ERC_RNG_SEED

The following symbols are defined that correspond to the standard SHE key

numbers:

SHE_SECRET_KEY

SHE_MASTER_ECU_KEY

SHE_BOOT_MAC_KEY

SHE KEY 1

SHE_KEY 2

SHE_KEY_3

SHE_KEY 4

SHE_KEY_5

SHE_KEY_6

SHE_KEY 7

SHE_KEY_8

SHE_KEY 9

SHE_KEY_10

SHE_RESERVED

SHE_RAM_KEY
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2.2 CryptoCAN

2.3 CryptoCAN — CryptoCAN context

class CryptoCAN( [ transmit=False | [, encryption_key=HSM.SHE_KEY 1]

[, authentication_key=HSM.SHE_KEY_2] [, b_flag=0] [, anti_replay=False] [, alt_freshness=False]
[, no_encrypt=False])

Creates a CryptoCAN context and makes it ready to generate or receive CryptoCAN
frames. A transmission context is created if transmit is set to True.

The key numbers are set in the call to refer to the keys loaded into the HSM. A receiver
and a transmitter can used different key numbers, but the key values loaded into the key
respective key slots in each HSM must be the same for the sender and the receiver. The
keys must have their permission set in the HSM appropriately: keys to be used for
authentication must have the authentication permission.

The B Flag is set to indicate which bit of the CAN ID will be used to indicate Frame B.
The CAN ID of the plaintext frame must not have this bit set. Both the transmit and all
receive contexts must use the same B Flag value. The B Flag is measured from the least
significant bit of the arbitration ID (either 11-bit or 29-bit identifiers).

The Anti-Replay option can be enabled but it must be enabled for the transmitter and at
every receiver that wishes to use it. When anti-replay is disabled, the freshness value at
the sender and the receivers must match exactly. When anti-replay is enabled, there are
two rules:

e The transmitter and the receivers must keep their freshness values synchronized
together within a range: the freshness value at a receiver must be no more than
32 ahead of the freshness value used at the transmitter and no more than 31
behind.

e The transmitter must use a freshness value higher than the previous value (using
modulo arithmetic: the freshness value is a 31-bit unsigned integer and rolls over
to 0).

The Alternative Freshness option applies to receive contexts and allows the application
to supply two freshness values, with the message being accepted if either value causes
the message to verify.

The No Encrypt option disapplies the encryption wrapper so that the contents of Frame
A and Frame B are sent on the bus unencrypted (the MAC still applies to the message).
This allows existing CAN tools to decode the message contents during a debugging
phase: Frame B contains the plaintext payload. This option must be set consistently for
the transmitter and the receivers.

Parameters

e transmit (bool) — Set to True if the context is for generating frames, or False if
the context is used for receiving frames

e encryption_key (integer) — The key number in the HSM used for encryption

¢ authentication_key (integer) — The key number in the HSM used for
authentication
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b_flag (integer) — The bit number of the CAN ID that indicates a B Frame
e anti_replay (bool) — If True enables the anti-replay feature

e alt_freshness (bool) — If True then a second freshness value can be supplied
(receive contexts only)

e no_encrypt (bool) — If True then the encryption wrapper is not applied
Raises

e ValueError —if encryption_key, authentication_key or b_flag are out of range or
if the key numbers are the same or if the HSM returns an error or if transmit is
True and alt_freshness is True

e RuntimeError —if the key storage is corrupted or uninitialized
Methods
create_frames( [challenge=None] )
Gets the unique ID of the HSM.

This method implements SHE CMD_GET_ID. The function returns a 120-bit
unique ID, the 8-bit HSM status register, and a 128-bit MAC.

If challenge is not set, then a challenge of 0 is issued.
If the key for MASTER_ECU_KEY is empty, then the MAC returned is 0.
The return values are bytes in big-endian format.
Parameters

e challenge (bytes) — 16 bytes as a challenge value to the HSM
Raises

e ValueError —if the HSM returned an error

Returns A 3-tuple of the HSM unique ID, HSM status register, HSM MAC
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3 Quick start on the CANPico

3.1 Setting up the HSM

Connect to the board using a terminal emulator (minicom, PuTTY, rshell, etc.) to get a
REPL prompt (use the first serial port — typically /dev/tty ACMO on Linux — not the
second one, which is reserved for MIN).

At the REPL prompt, bring in the CryptoCAN API and do a factory reset of the HSM:

>>> from rp2 import *
>>> h = HSM(secret _key=bytes([0] * 16))

This obviously isn't a very good secret key, so use a proper random key from an
appropriate source. The HSM after a reset will have no keys in it, so program a key using
the simple backdoor method:

>>> h.backdoor_set key(key=HSM.SHE KEY 1, key value=bytes([0] * 16),
store_keys=True)

This will set the value of user key 1 and define it as an encryption key.

Reset the CANPico with CTRL-D (or power cycle it) and try initializing the HSM:

>>> from rp2 import *
>>> h = HSM()

This should succeed, and user key 1 will be set. We can check this by trying to encrypt
something with it:

>>>m = bytes([0] * 16)
>>> ¢ = h.enc_ecb(m, HSM.SHE_KEY_1)
>>> ¢

b'f\xe9K\xd4\xef\x8a, ;\x88L\xfaY\xcad+."

To see the hex value for the ciphertext we can use some Python:

>>> from binascii import hexlify
>>> hexlify(c)
b'66e94bd4ef8a2c3b884cfa59ca342b2e’

That particular ciphertext is very common: an internet search for the string gives many
results because it’s zero encrypted with zero.

Just to check everything is working the reverse process can be done by decrypting that
ciphertext with the key:

>>> p = h.dec_ecb(c, HSM.SHE_KEY_1)
>>> hexlify(p)
b'00000000000000000000000000000000"
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3.2 Basic CryptoCAN messaging
This simple example will encrypt then decrypt CryptoCAN CAN frames on the same
CANPico board to keep things simple.

First, create an instance of the HSM. This is necessary even if no further use of the HSM
is made: the class constructor initializes the HSM and loads the keys from flash memory.

>>> from rp2 import *
>>> h = HSM()

Program a pair of keys into the HSM:

>>> from binascii import unhexlify

>>> ek = unhexlify(°92b91441bc219b140c325d34a3d3c73f’)
>>> ak = unhexlify(°0bb491e6e5809f960959b2fc662e70e2’)
>>> h.backdoor_set key(key=HSM.SHE KEY 1, key value=ek)
>>> h.backdoor_set key(key=HSM.SHE _KEY 2, key value=ak,
authentication_key=True, store_keys=True)

The first key is the encryption key, the second is the authentication key. These key values
need to be programmed into all the CANPico boards that will receive CryptoCAN
frames (for simplicity, only one board is being used). Note that this uses the backdoor
API: this will be removed in the future and then the SHE load key API must be used to
set keys.

Next, create a sending context on the sending CANPico board:

>>> tx = CryptoCAN(encryption_key=HSM.SHE_KEY_1,
authentication_key=HSM.SHE_KEY_2, transmit=True)

All receiving CANPico boards need to create a receive context:

>>> rx = CryptoCAN(encryption_key=HSM.SHE KEY 1,
authentication_key=HSM.SHE_KEY_2)

Then create a plaintext CAN frame using the regular CAN API:

>>> f = CANFrame (CANID(0x122), data=b'hello')
>>> f

CANFrame (CANID(id=S122), dlc=5, data=68656c6c6f)

Create a CryptoCAN pair of these frames:

>>> frames = tx.create_ frames(f)

>>> frames

[CANFrame (CANID(id=S122), dl1c=8, data=ec363347adl12172f),
CANFrame (CANID(id=S123), dlc=8, data=9d99ff5d4228e0fa)]

The values of the payloads will be different each time the example is run because
CryptoCAN contexts are initialized using random numbers.

These frames could now be transmitted over CAN with the transmit_frames()
method of the CAN class, and then picked up at receivers by the recv () method. But for
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simplicity we can just use the frames variable directly on the same CANPico board.
Frames are received in sequence by the receive context:

>>> rx.receive_frame(frames[0])
>>> rx.receive_frame(frames[1])

This produces no frame: with CryptoCAN the first message after creating a receive context
is always dropped. Subsequent messages are received though:

>>> frames = tx.create_ frames(f)
>>> rx.receive_frame(frames[0])
>>> rx.receive_frame(frames[1])
CANFrame (CANID(id=S122), dlc=5, data=68656c6c6f)

The call returns the decrypted and verified CAN frame.

3.3 Anti-replay protection

The simple communication example left the freshness value and anti-replay protections
in the application domain. This example demonstrates using the built-in anti-replay
feature of CryptoCAN.

CryptoCAN contexts are created as before, but also enable the anti-replay feature:

>>> tx
>>> rx

CryptoCAN(transmit=True, anti_replay=True)

The encryption and authentication key numbers aren’t specified above because they
default to application key 1 and application key 2 anyway.

The following sequence illustrates the anti-freshness rules:

>>> frames = frames = tx.create frames(f, freshness=12345678)
>>> rx.receive_frame(frames[0], freshness=12345670)

>>> rx.receive_frame(frames[1l], freshness=12345670)

>>> frames = frames = tx.create frames(f, freshness=12345679)
>>> rx.receive_frame(frames[0], freshness=12345670)

>>> rx.receive_frame(frames[l], freshness=12345670)

CANFrame (CANID(id=S122), dlc=5, data=68656c6c6f)

>>> frames = frames = tx.create frames(f, freshness=12345679)
>>> rx.receive_frame(frames[0], freshness=12345670)

>>> rx.receive_frame(frames[l], freshness=12345670)

>>> frames = frames = tx.create frames(f, freshness=12345680)
>>> rx.receive_frame(frames[0], freshness=12345670)

>>> rx.receive_frame(frames[l], freshness=12345670)

CANFrame (CANID(id=S122), dlc=5, data=68656c6c6f)

Note how the receiver uses the same freshness value for all calls (in a real system this
might be broadcast from a central time source and be updated only periodically). This is
acceptable because the value is within -31 to 32 of the freshness value used at the
transmitter.

The first message is dropped, as always, and the second message is received. The third
message doesn’t advance the freshness value and to a receiver it looks like a replayed
old message and is dropped. The fourth message advances the freshness value and
received.
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